Number Theory Down Under 8 Further Study of the Knave Map

Thomas Morrill ${ }^{1}$ Mansur Boase

${ }^{1}$ Trine University
Slides available at tsmorrill.github.io.
2020 October 8

Outline

- Look-and-Say Sequences
- The Look-Knave Sequence
- Limits of $k^{n}(s)$.
- Asymptotics
- Preliminary Bounds
- Next Steps

Look-and-Say Sequences

$$
\begin{gathered}
1 \\
11 \\
21 \\
1211 \\
111221
\end{gathered}
$$

Look-and-Say Sequences

The Look-and-Say Sequence is a sequence of integers (words)

$$
1,11,21,1211, \ldots
$$

in which the digits of s_{n} are the description of the digits of s_{n-1}.

Look-and-Say Sequences

Theorem (Conway, 1987)

Let s_{n} denote the nth term in the Look-and-Say sequence. Then,

$$
\lim _{n \rightarrow \infty} \frac{\left|s_{n+1}\right|}{\left|s_{n}\right|}=1.3035 \ldots
$$

which is an algebraic integer of degree 71.

Look-and-Say Sequences

Theorem (Conway's Cosmological Theorem, 1987)

Let ℓ denote the Look-and-Say map. There is a known set (table) of words (elements) so that the following hold.

For all pairs of elements u, v on the table, $\ell(u v)=\ell(u) \ell(v)$.
Further, let $w \in\{0,1,2,3,4,5,6,7,8,9\}^{n}$, with $n \geq 1$. Then there exists $m \geq 0$ so that $\ell^{m}(w)$, and all its iterates under ℓ decompose into words from the table of elements

$$
w^{\prime}=w_{1}^{\prime} \ldots w_{k}^{\prime}
$$

"All compounds eventually decompose into lower elements."

Look-and-Say Sequences

The Binary Look-and-Say Sequence is a sequence of binary words

```
1,11,101,111011,\ldots
```

in which the bits of s_{n} are the base- 2 description of the digits of s_{n-1}.

Look-and-Say Sequences

Theorem (Johnston, 2010 (blog post))

Let s_{n} denote the nth term in the Binary Look-and-Say sequence. Then,

$$
\lim _{n \rightarrow \infty} \frac{\left|s_{n+1}\right|}{\left|s_{n}\right|}=1.4655 \ldots
$$

which is an algebraic integer of degree 3.

The Look-Knave Map

For a binary word s, let \bar{s} be the bitwise complement of s.
The Look-Knave Sequence is a sequence of binary words, in which $s_{1}=1$, and the bits of s_{n} are the base- 2 description of $\overline{s_{n-1}}$.

We call this operation the knave map,

$$
k: \bigcup_{n=1}^{\infty}\{0,1\}^{n} \rightarrow \bigcup_{n=1}^{\infty}\{0,1\}^{n}
$$

The Look-Knave Map

Here is the calculation of the first few terms of the sequence.

$$
\begin{array}{ll}
s_{1}=1 & \overline{s_{1}}=0 \\
s_{2}=10 & \overline{s_{2}}=01 \\
s_{3}=1011 & \overline{s_{3}}=0100 \\
s_{4}=1011101 & \overline{s_{3}}=0100010 \\
\vdots & \vdots
\end{array}
$$

The Look-Knave Map

Entries of the Look-Knave sequence

```
1
1 0
1011
1011100
1011110101
1011100011101110
10111101111101111011
1011100011101011100011100
1011110111110111011110111110101
101110001110101111011100011101011101110
```


The Look-Knave Map

Conjecture

Let s_{n} denote the nth term in the Look-Knave sequence. Then,

$$
\lim _{n \rightarrow \infty} \frac{\left|s_{n+1}\right|}{\left|s_{n}\right|}=1.12 \ldots
$$

which is an algebraic integer.

Limits of $k^{n}(s)$

Odd entries of the Look-Knave Sequence

```
1
1011
1011110101
10111101111101111011
1011110111110111011110111110101
```

Even entries of the Look-Knave Sequence

```
10
1011100
1011100011101110
1011100011101011100011100
101110001110101111011100011101011101110
```


Limits of $k^{n}(s)$

Theorem (M, 2020)

Let $s_{n}=k^{n}(1)$. Then the bitwise limits

$$
\lim _{n \rightarrow \infty} s_{2 n}=S_{0}, \quad \quad \lim _{n \rightarrow \infty} s_{2 n+1}=S_{1}
$$

exist. Further, S_{0} is the description of $\overline{S_{1}}$ and vice versa.

$$
\begin{aligned}
& S_{0}=1011100011101 \ldots \\
& S_{1}=1011110111110 \ldots
\end{aligned}
$$

Limits of $k^{n}(s)$

Can we really define the action of k on any infinite binary word? Simple, we only have two cases to handle: a tail of all 0s, and a tail of all 1 s .

$$
\begin{aligned}
k(0 \ldots) & :=1 \ldots \\
k(1 \ldots) & :=0 \ldots
\end{aligned}
$$

This plays nicely with the inclusion map

$$
\begin{aligned}
\bigcup_{n=1}^{\infty}\{0,1\}^{n} & \rightarrow\{0,1\}^{\mathbb{N}} \\
w 0 & \mapsto w 01 \ldots \\
w 1 & \mapsto w 1 \quad 0 \ldots
\end{aligned}
$$

Limits of $k^{n}(s)$

Theorem (M, 2020)

Let S be any infinite binary word. If S is neither of ($0 \ldots$) and (1...), then the bitwise limits

$$
\lim _{n \rightarrow \infty} k^{2 n}(S), \quad \lim _{n \rightarrow \infty} k^{2 n+1}(S)
$$

both exist, and

$$
\left\{\lim _{n \rightarrow \infty} k^{2 n}(s), \lim _{n \rightarrow \infty} k^{2 n+1}(s)\right\}=\left\{S_{0}, S_{1}\right\}
$$

Thus, S_{0} and S_{1} are the attracting fixed points of the map

$$
k^{2}:\{0,1\}^{\mathbb{N}} \rightarrow\{0,1\}^{\mathbb{N}}
$$

and ($0 \ldots$) and (1...) are the repelling fixed points.

Asymptotics

What are the properties of k as a function of infinite sequences?
What are the properties of S_{0} and S_{1} ?

How about the density of 1 s in these words?

Asymptotics

For a binary word s, define

$$
\begin{aligned}
|s| & =\text { the length of } s . \\
|s|_{1} & =\text { the number of } 1 \mathrm{~s} \text { which occur in } s . \\
d_{1}(s) & =|s|_{1} /|s| \\
\Delta(s) & =\text { the number of bit changes which occur in } s .
\end{aligned}
$$

For example,

$$
\begin{aligned}
d_{1}(11011) & =\frac{|11011|_{1}}{|11011|}=\frac{4}{5} \\
\Delta(11011) & =2
\end{aligned}
$$

Asymptotics

We are interested in studying limits of the form

$$
\lim _{n \rightarrow \infty} \frac{f\left(w_{n}\right)}{g\left(w_{n}\right)}
$$

where w_{n} is the prefix of S_{0} (resp., S_{1}) of length n.
Notice w_{n} is also a prefix of some word $k^{m}(1)!$

Preliminary Bounds

Lemma

For $s_{n} \in\left\{k^{n}(1)\right\}_{n=0}^{\infty}$,

$$
\left|s_{n}\right| \asymp\left|s_{n}\right|_{1} \asymp\left|s_{n}\right|_{0} \asymp \Delta\left(s_{n}\right) \asymp|k(s)| .
$$

That is, for each pair of functions, there exist constants A, B so that

$$
A\left|s_{n}\right| \leq \Delta\left(s_{n}\right) \leq B\left|s_{n}\right|
$$

and so on.
Proof.

Run-lengths of s are bounded; at most three 0s, or five 1s, may occur in a run.

Preliminary Bounds

Corollary

For $s_{n} \in\left\{k^{n}(1)\right\}_{n=0}^{\infty}$,

$$
1 \asymp d_{1}\left(s_{n}\right) \asymp d_{0}\left(s_{n}\right) \asymp \frac{\Delta\left(s_{n}\right)}{\left|s_{n}\right|} \asymp \frac{\left|k\left(s_{n}\right)\right|}{\left|s_{n}\right|} .
$$

Preliminary Bounds

Lemma (M, 2020)

All $s_{n} \in\left\{k^{n}(1)\right\}_{n=0}^{\infty}$, may be decomposed into a concatenation of subwords w listed below.

Body		Tail	
w	$k(w)$	w	$k(w)$
0	11	00	101
000	111		
1	10	11	100
111	110		
1111	1000		
11111	1010		

Here, subwords in the "tail" column may only occur as the final subword of s_{n}.

This means 0110 and 1001 never occur in S_{0} or S_{1}.

Preliminary Bounds

Subwords of S_{0}, S_{1}, their densities, and densities are given below.

s	$d(s)$	$k(s)$	$d(k(s))$
10	$1 / 2$	1011	$3 / 4$
1000	$1 / 4$	10111	$4 / 5$
1110	$3 / 4$	1011	$4 / 5$
111000	$1 / 2$	110111	$5 / 6$
11110	$4 / 5$	100011	$1 / 2$
1111000	$4 / 7$	1000111	$4 / 7$
111110	$5 / 6$	101011	$2 / 3$
11111000			

With a little work, one can show 11111000 also does not occur in S_{0} or S_{1}.

Preliminary Bounds

They warned me about averaging averages...
Lemma (The Mediant Inequality)
For $1 \leq i \leq n$, let $q_{i}=\frac{a_{i}}{b_{i}}$ with $a_{i} \geq 0, b_{i}>0$, and

$$
q_{1} \leq \ldots \leq q_{n}
$$

Further let ω_{i} be nonnegative weights. Then

$$
q_{1} \leq \frac{\omega_{1} a_{1}+\cdots+\omega_{n} a_{n}}{\omega_{1} b_{1}+\cdots+\omega_{n} b_{n}} \leq q_{n}
$$

Preliminary Bounds

So, if s is a prefix of S_{0} or S_{1}, then

$$
\frac{|s|_{1}}{|s|}=\frac{\omega_{1} \Sigma w_{1}+\cdots+\omega_{n} \Sigma w_{n}}{\omega_{1}\left|w_{1}\right|+\cdots+\omega_{n}\left|w_{n}\right|}
$$

where the w_{i} are subwords taken from the $k(s)$ column of the table. This gives us

$$
\frac{1}{2} \leq \frac{|s|_{1}}{|s|} \leq \frac{5}{6}
$$

So, there are no fewer 1 s than 0s.
Can we do better?

Gerrymandering

Preliminary Bounds

We don't like the subword $s=11110$, because the density of $k(s)$ is not rigged in our favor.

s	$k(s)$	$d(k(s))$
10	1011	$3 / 4$
1000	10111	$4 / 5$
1110	1011	$4 / 5$
111000	110111	$5 / 6$
11110	100011	$1 / 2$
1111000	1000111	$4 / 7$
111110	101011	$2 / 3$

By studying the $k(s)$ column, we deduce 11110 cannot immediately follow itself in $k\left(s_{n}\right)$, but $s_{n}=k\left(s_{n-1}\right)$.

Preliminary Bounds

Let's replace the 11110 line in the table by considering all possible subwords which begin with 1110 instead.

s	$k(s)$	$d(k(s))$
1111010	1000111011	$6 / 10$
111101000	10001110111	$7 / 11$
111101110	1000111011	$7 / 11$
11110111000	100011110111	$2 / 3$
111101111000	1000111000111	$7 / 13$
11110111110	100011101011	$7 / 12$

This implies

$$
\frac{7}{13} \leq \frac{|s|_{1}}{|s|} \leq \frac{5}{6}
$$

Preliminary Bounds

Let s_{n} be the prefix of length n of S_{0} (resp., S_{1}). Then

$$
\begin{aligned}
1 \leq \underline{\lim } \frac{k^{n+1}(1)}{k^{n}(1)} & \leq \varlimsup \frac{k^{n+1}(1)}{k^{n}(1)} \leq 1.7 \\
\frac{7}{13} \leq \underline{\lim } \frac{|s|_{1}}{|s|} & \leq \varlimsup \frac{|s|_{1}}{|s|} \leq \frac{5}{6}
\end{aligned}
$$

Next Steps

- Study k^{4} instead of k^{2}.
- Periodicity/entropy of S_{0}, S_{1} ?
- Work in an extended alphabet $\{0,1, \mathbf{0}, \mathbf{1}\}$.

Thank you!

