Oregon State University REU 2020 Look, Knave

Thomas Morrill

Trine University Slides available at tsmorrill.github.io.

August 6, 2020

Outline

- Look-and-Say Sequences
- The Look-Knave Sequence
- Limiting behavior of the Look-Knave Sequence
- Uniqueness of S_{even} and S_{odd}

Thomas Morrill Oregon State University REU 2020

1

The <u>Look-and-Say Sequence</u> is a sequence of decimal strings $1, 11, 21, 1211, 111211, 311221, \ldots,$

in which the digits of s_n are a description of the digits of s_{n-1} .

Theorem (Conway, 1987)

Let s_n denote the nth term in the Look-and-Say sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.3035\dots,$$

which is an algebraic integer of degree 71.

The <u>Binary Look-and-Say Sequence</u> is a sequence of binary strings

in which the bits of s_n are a description of the digits of s_{n-1} .

Theorem (Johnston, 2010 (blog post))

Let s_n denote the nth term in the Binary Look-and-Say sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.4655\dots,$$

which is an algebraic integer of degree 3.

The Look-Knave Sequence is a sequence of binary strings with $s_1 = 1$ in which the bits of s_n are a description of the digits of the bitwise complement of s_{n-1} .

$$s_1 = 1 \qquad \overline{s_1} = 0$$

$$s_2 = 10 \qquad \overline{s_2} = 01$$

$$s_3 = 1011 \qquad \vdots$$

$$\vdots$$

Entries of the Look-Knave sequence			
1			
10			
1011			
1011100			
1011110101			
1011100011101110			
10111101111101111011			
1011100011101011100011100			
1011110111110111011110111110101			
10111000111010111101110001110101110111			

Conjecture

Let s_n denote the nth term in the Look-Knave sequence. Then,

$$\lim_{n \to \infty} \frac{|s_{n+1}|}{|s_n|} = 1.12\dots,$$

which is an algebraic integer.

Entries of the Look-Knave sequence

 1
 10

 1011
 1011100

 1011110101
 1011100011101110

 1011110111101111011110111
 101110001110011100011100

 1011110111101111011110111
 .

:

Theorem (M, 2020)

Let s_n denote the nth term of the Look-Knave sequence. Then the limits

$$\lim_{n \to \infty} s_{2n} = S_{even}, \qquad \qquad \lim_{n \to \infty} s_{2n+1} = S_{odd}$$

exist. Further, S_{even} is the description of $\overline{S_{odd}}$ and vice versa.

 $S_{even} = 1011100011101...$ $S_{odd} = 1011110111110...$

Lemma (M, 2020)

Let s_n denote the nth term of the Look-Knave sequence. Then s_n is comprised entirely of the substrings s listed below.

s	k(s)	s	k(s)
0	10	00011	111100
00	101	0111	11110
000	111	00111	101110
1	10	000111	111110
01	1110	01111	111000
001	10110	001111	1011000
0001	11110	0001111	1111000
011	11100	011111	111010
0011	101100	0011111	1011010

We extend the Knave map to the set of infinite binary strings $2^{\mathbb{N}}$

$$k: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$$

by declaring that

k(000...) = 111...k(111...) = 000....

Theorem (M, 2020)

The only fixed points of k^2 in $2^{\mathbb{N}}$ are S_{even} and S_{odd} , which are attracting, and 000... and 111..., which are repelling.

Corollary

The infinite binary strings S_{even} and S_{odd} are the unique pair such that S_{even} is the description of $\overline{S_{odd}}$ and vice versa.

Thank you!